
Espoo–Vantaa Institute of Technology
Degree Programme
in Digital Information Provision

Jani Tarvainen

Bug Tracking Tool for Browser-based Applications

Bachelor’s Thesis 28 April 2004

Instructor: Sven Borgers, Technology Manager
Supervisor: Aarne Klemetti, Principal Lecturer
Language Advisor: Marianne Kiekara, Lecturer

ESPOON–VANTAAN TEKNILLINEN
AMMATTIKORKEAKOULU

INSINÖÖRITYÖN
TIIVISTELMÄ

Tekijä
Otsikko

Sivumäärä
Aika

Jani Tarvainen
Selainpohjaisten sovellusten virheiden seurantajärjestelmä

71 sivua
28.4.2004

Koulutusohjelma Digital Information Provision

Ohjaaja
Valvoja

teknologiapäällikkö Sven Borgers
yliopettaja Aarne Klemetti

Insinöörityössä suunniteltiin ja toteutettiin virheiden seurantajärjestelmä selainpohjaisia
sovelluksia varten. Tavoitteena oli luoda helppokäyttöinen järjestelmä, johon projektin
jäsenet kirjaavat kehitettävässä järjestelmässä huomaamansa virheet. Marmalade 1.0
järjestelmässä virheet tallennetaan tietokantaan, jota kehitystyöstä vastaavat henkilöt
hallinnoivat selainpohjaisen käyttöliittymän avulla. Hallinnointiliittymä mahdollistaa
virheiden seuraamisen projekteittain. Yksittäisen virheen tilaa vaihdetaan työn
etenemisen myötä. Mahdolliset tilat ovat avoin, varattu ja suljettu.

Virheiden kirjaus tapahtuu JavaScript-tekniikalla rakennetun raportointielementin
avulla. Tämä elementti rakennettiin täysin riippumattomaksi seurattavan järjestelmän
palvelinohjelmistosta, käytetystä ohjelmointikielestä sekä tietokannasta. Elementti
liitetään seurattavaan järjestelmään HTML-sivupohjia muokkaamalla. Sivupohjiin
lisätään script-elementti, joka lataa raportointielementintoiselta palvelimelta. Projekti- ja
paikkatietojen kirjaus ja ylläpito tapahtuu URL-osoittimien avulla. Selain yhdistää
seurattavan järjestelmän tuottaman HTML-datan ja lomake-elementin. Käyttäjälle
prosessi näkyy seurattavan järjestelmän näkymään lisättynä raportointilomakkeena.

Työ tehtiin digitaalisia markkinointiviestinnän palveluita tuottavalle Morning Digital
Design Oy:lle. Työssä perehdyttiin virheidenseurannan teoriaan sekä
tietokantapohjaisten verkkosovelluksien suunnitteluun ja rakentamiseen. Erityisen
haastavaa oli palvelin- ja selainpohjaisten skriptikielien yhdistäminen. Työ ei kata
järjestelmän käyttöönottoa yrityksen kehitysprosessissa.

Hakusanat Virheiden seurantajärjestelmä, bugi, PHP, MySQL, Apache,
JavaScript, RSS, XML, LDAP, GPL, Bugzilla, ClearQuest

ESPOO–VANTAA INSTITUTE
OF TECHNOLOGY

ABSTRACT

Author
Name of Thesis

Pages
Date

Jani Tarvainen
Bug Tracking Tool for Browser-based Applications

71
28 April 2004

Degree Programme Digital Information Provision

Instructor
Supervisor

Sven Borgers, Technology Manager
Aarne Klemetti, Principal Lecturer

The goal of the thesis project was to plan and implement a bug tracking tool for
browser-based applications. The aim was to create an intuitive system for project teams
to report bugs noticed in the developed system. In the Marmalade 1.0 system, the errors
are reported into a database, which is administered by the developers. The developers
administer the database using a browser-based tool. The administration interface allows
the bugs to be monitored by project. An individual bug’s status is updated as work
progresses. The possible statuses are open, reserved and closed.

The reporting of bugs is done using a reporting client built with JavaScript technology.
The client was built to be independent of the server software, programming language
and the database of the tracked system. The client is integrated to the system under
development by modifying the HTML templates. A script-tag that loads the client is
added to the templates. Project and location data is maintained by using URL pointers.
The browser combines the HTML data and the JavaScript client. To the user the process
is shown as a floating reporting-element in the view of the tracked system.

The project was done for Morning Digital Design Oy, a Finnish provider of digital
marketing services. Knowledge of the theory of common bug tracking practices and
methods were gained. The implementation was technically challenging and further
experience of web application development was acquired. Especially the
implementation of the floater by combining server-side and client-side scripting proved
to be challenging. The project did not cover the introduction of the tool to the
development process of the company.

Keywords Bug tracking tool, bug, PHP, MySQL, Apache, RSS, XML,
LDAP, GPL, Bugzilla, ClearQuest

Table of contents

1. Introduction .. 5

2. The development process .. 9

3. System requirements ... 10

4. Planning.. 12

4.1. Available alternatives .. 12

4.2. System specifications .. 15

4.2.1. Basic dataflow... 15

4.2.2. Architecture... 15

4.2.3. Server platform.. 17

4.2.4. Database.. 17

4.2.5. LDAP authentication ... 18

4.2.6. RSS feed ... 20

4.3. Interfaces .. 22

4.3.1. Administration interface .. 22

4.3.2. Floater interface... 26

5. Implementation ... 31

5.1. Development platform and tools.. 31

5.2. Back-end and administration interface... 33

5.3. Floater interface .. 38

5.4. RSS feed ... 48

5.5. Platform transition... 51

6. Floater deployment ... 54

7. Conclusions .. 56

References .. 57

APPENDIX A: Administration interface screen captures .. 59

APPENDIX B: Floater interface screen captures... 65

APPENDIX C: RSS reader screen captures .. 67

APPENDIX D: Commercial bug tracking tool license fees ... 68

APPENDIX E: Typical bug reporting forms ... 69

APPENDIX F: System file structure ... 71

5

1. Introduction

Software bugs are familiar to both the developers and users of software. Matthew A.

Telles [1, p. 56] offers the following definition for a bug: “Bugs are behaviors of the

system that the development team (developers, testers and project managers) and

customers have agreed are undesirable.” Due to human errors and bad specifications,

bugs will continue to be a part of software development projects.

Tracking bugs is important for several reasons. Business wise bugs are considered

expensive since they damage the company’s reputation and delay projects: “In 1994,

Capers Jones conducted a survey of approximately 4,000 software projects. The survey

asked the participants for reasons for schedule overruns. One of the most common

reasons reported was poor quality.” [1, p. 63]

In addition, the survey also showed that many projects are simply cancelled due to an

overwhelming amount of problems. From the human point of view, the people involved

in projects with numerous problems get frustrated, demoralized and lose interest.

While web application development is a relatively new branch of software engineering,

many of the traditional software engineering practices apply to it: “Following proper

software engineering techniques (or modifying them for web development) can have a

substantial impact on overall system usability primarily because it enables developers to

achieve higher quality.” [2, p. 343]

The Marmalade 1.0 bug tracking system (also referred to as Marmalade) aims to help

development teams to report and keep track of errors in projects. The system is meant

for projects that utilize a browser-based interface such as a content management system

or a web site. A browser-based system is, however, not a pre-requisite so it can be used

to keep track of virtually any software project.

6

The system can be roughly divided into two components: reporting and administration.

Found flaws are reported using the reporting interface and managed using the

administration interface. The aim was to make the reporting of errors as convenient as

possible. In addition, it was ideal to send as much automatic data as possible.

Apple Computer, Inc. has successfully applied a similar method in debugging their

Safari web browser (public beta launched in January 2003). The application has an

integrated bug reporting interface that allows users to report various problems. It has

advanced features such as a built-in option to send a screen capture to demonstrate

rendering errors. The sent error reports are logged to a database that the developers can

access. The reporting interface is shown in Image 1.

Image 1 - Screen capture of the Safari browser’s bug reporting interface

The client

The system was made for Morning Digital Design Oy (from now on referred to as

Morning), a Finnish provider of digital marketing services. The work was done in

September-December 2003 as an independent project.

The company has a relatively long history, dating back to 1988. Throughout the years

the company has undergone multiple mergers and operating names. The current form

was reached in January 2001 when To The Point Oy and TJ Group Branding and

Advertising units were united. The shares of the formed company were distributed

7

equally to the previous owners. Both Edita Oyj and TJ Group Oyj hold 50% of the

shares.

With such a long history, the service offerings and products of the company have

evolved through the years. As markets change the previous focus from producing CD-

ROM multimedia products has switched to a broader direction: “Morning is a service

company that focuses on consulting, planning and producing works for digital

marketing communications” [3]

The company employs over 50 people in two offices in Helsinki and Tampere. The

turnover for the year 2001 was EUR 4 million and EUR 4.5 million for the year 2002.

Motivation and objectives

Morning has multiple products that are either completely browser-based or have a

browser-based administration interface. These include the Morning CMS system for

content management on the web and the more versatile SmartStore CMS for publishing

content for the following channels:

• Retail store terminals

• Mobile devices

• Internet

• CD-ROM / DVD

The main motivation for building the Marmalade system was the fact that there were no

uniform means to keep track of the problems in the products being developed. Many

project managers keep Microsoft Excel charts or similar tools to keep track of the

problems. The requests for fixing the problems were given in person or by e-mail.

Introducing uniform reporting templates (examples shown in APPENDIX E) could

make the process more fluent, but ultimately these methods of tracking bugs become a

problem. For example, when a group of people is doing work on a project, time can be

8

wasted by searching for problems that have already been addressed: “Were you able to

find the reported bug? If not, remember that bugs don’t just go away; either they’re

hiding, or they have been fixed already.” [4, p. 193]

The objective was to improve the workflow of the development process by providing a

tool that would be used by the whole project team to keep track of problems and errors.

Structure of thesis

Chapter 2 contains a general description of the development process as a whole.

Chapter 3 describes the basic requirements set for the Marmalade system.

Chapter 4 elaborates the planning phase and briefly introduces the technologies used to

build the system and the reasons they were chosen.

Chapter 5 explains the implementation in detail, including problems encountered.

Chapter 6 describes how to deploy the system to track a browser-based application.

Chapter 7 analyses the process in general and draws conclusions such as what should

have been done differently and what could be done to improve the system.

APPENDIX A, B and C contain screen captures of the final application.

APPENDIX D contains a table of commercial bug tracking tool license fees.

APPENDIX E contains two examples of traditional bug reporting forms.

APPENDIX F contains the file structure of the final application.

9

2. The development process

The process had three major stages:

1. Setting the requirements

2. Planning

3. Implementation

The requirement stage defines what the product must be able to accomplish and what

features it should have. Benchmarking similar existing systems is a useful method in

setting the requirements. The requirements set at the beginning of the project are subject

to minor changes during the planning and implementation stages.

In the planning stage, the methods to reach the requirements are chosen. This includes

planning the interactions in the system and selecting the technical components:

• Programming language(s)

• Database

• Server platform

During the implementation stage, the specifications made in the planning stage will be

used to create the system. When the application is considered to be in its final form or

very near it, it is moved from the development platform to the production one.

The implementation phase also encloses the testing of the product as each added

functionality is tested after it is built. Testing is an important part of the quality process,

which should be continuous all the way through the project: “Quality assurance (QA)

processes should occur throughout the production process. QA needs to start at the

beginning of a project and never end.” [1, p. 369]

Additional development phases may be launched after the product is released.

10

3. System requirements

The aim of the project was to create a system that would enable the users to log errors

found in browser-based applications. This database of errors is administered using a

web browser. To further specify the desired functionality some specific requirements

were set. The requirements are shown in Table 1.

Table 1 - Requirements for the Marmalade system

Requirement Explanation

Bug reporting must be convenient A bug database is useful only if bugs are reported.

By making the process as convenient as possible,

the probability of reporting is increased.

The system must be independent of

the server platform of the tracked

application

The system must be able to track systems built on

various server platforms or even static XHTML-

pages.

The system must support multiple

projects

The system must support multiple projects and

allow a single user to work on several projects at

the same time.

The system must support

customized reports

Users must be able to create customized queries

to the database using the following options:

• Project

• Bug status

• Bug category

• Bug priority

• Keyword

11

Requirement Explanation

The reporting client should log

additional data automatically

The reporting client should automatically send as

much automatic data as possible to make the

reproduction of errors as simple as possible:

“Without duplicating the environment of the

problem, you cannot be sure that you have fixed

the problem.”

[1, p. 289]

The system must support

attachments

Attachments allow the reporter to describe the

reported error with files such as:

• Screen captures

• Content documents

• Corrected images

The system must log bug category

and status

The system must keep a record of an individual

bug’s category and status.

The system must log reporter name

and e-mail

In case the bug description is vague or some other

additional information is needed, the person who

reported the error should be contacted.

New bug entries must be reported

via e-mail

Once a bug is reported, e-mail should be sent to

the appropriate e-mail address or a group of e-

mail addresses.

The bug reports should be easily

printable

Nielsen [4, p.95] underlines that under certain

circumstances, traditional printouts are still very

valuable, for example, as handouts in meetings.

12

4. Planning

The first step in planning the system was to do research on the available solutions on the

market. If a suitable system was found, it could be possible to modify the system to

meet the requirements set. Once the decision was made, the technologies and their

interactions were chosen and planned. The final step comprises the functional and

visual design of the user interfaces.

4.1. Available alternatives

Bug tracking is commonly considered essential in software development endeavors.

Joel Spolsky identifies the reason in his web log article [6]: “If you are developing code,

even on a team of one, without an organized database listing all known bugs in the

code, you are simply going to ship low quality code.”

Since bug tracking is an everyday practice, there are several tools on the market.

Reinventing the wheel is not necessarily sensible, so it is rational to evaluate if one of

these ready-made products or parts of them could be used. These offerings can be

roughly divided into two groups: commercial products and free publicly licensed

products.

Commercial options

There is a wide range of commercial bug tracking tools on the market. Both the feature

and pricing range of these products is considerable. According to Softwise Company’s

comparison chart (APPENDIX D) the license fees range from USD $100 to USD $1950

and beyond. The chart may be somewhat biased since it is used in the company’s

marketing material for their PR-Tracker product.

The expensive high-end products such as Rational ClearQuest are highly specialized

products with an excessive feature list meant for complex application development. It is

clear that Morning had no need for such a tool. In addition, the commercial products

13

might be difficult to modify to meet all the requirements that were set in the

requirements phase.

Publicly licensed options

The GNU Free Software directory [7] alone lists 19 different bug tracking tools

(February 2004) available for use. Most of these applications are licensed under the

GNU GPL. The license [8] states the following: “You may modify your copy or copies

of the Program or any portion of it, thus forming a work based on the Program”.

Program refers to an application, etc. licensed under the GNU GPL. The terms allow the

software to be modified (with some conditions) for commercial purposes.

The public license makes the listed applications ideal for modifying them to meet the

requirements of the project. The plethora of free alternatives makes it difficult to choose

a particular one. Due to its popularity, the choice was to closely examine the Mozilla

organization’s Bugzilla system. It is used in both open source and commercial projects.

The Mozilla web site states it is used in hundreds of projects in Fortune 500 companies.

[9]

Bugzilla is based on a MySQL database and Perl scripting language. It features a

browser-based interface for administration and reporting. Development of the system

began in 1998 and it is now at version 2.17.6 (February 2004). Efforts to further

improve the system remain strong and updates are released regularly.

The system is meant to be a general-purpose tool for debugging applications of different

types such as:

• Desktop applications

• Real-time systems

• Web applications

14

This results in the system having countless features that are not needed in web

development projects. The standard reporting form, for example, has fields for detailing

the exact setup (hardware and software) of your system. The query interface showing

some of the options is shown in Image 2.

Image 2 - Bugzilla bug query interface

Conclusion

After conducting an evaluation of both commercial and publicly available options, it

was decided that the best option was to build the system from ground up. Commercial

systems were ruled out due to pricing issues and potential problems and effort required

to modify them to reach the desired functionality. The open source option, Bugzilla,

was abandoned for the latter reason.

15

4.2. System specifications

4.2.1. Basic dataflow

The system can be broken down to the following elements and actions:

• Data input (reporting)

• Storage

• Administration

• Correction reporting

All the bug data in the system is a result of a user submitting a report. Depending on the

reporting method some automatic data may also be sent. This data is stored in a

database. The gathered data can be viewed and managed with the available

administration tools. Once a bug is solved, the status is set as closed. At this point, an

automatic correction report may be sent to the user that reported it.

Figure 1 - Basic dataflow in the Marmalade system

4.2.2. Architecture

As shown in Figure 1 the basic dataflow of the system is quite simple. There are two

users interacting on single data storage. In reality, the flow is more complicated and has

various forms. Figure 2 shows all the interacting components of the system.

16

Figure 2 - The components of the Marmalade 1.0 system and their interactions

The functions of the components are:

• The floater and form are alternative methods for users to input form data. The

floater is the preferred method, due to the additional data it sends.

• The bug database is the central storage for data. It contains information about

individual bugs, projects and their relations.

• The administration interface is used to administer the data in the system. It is the

only component to modify the bug database. It also sends correction reports to the

bug reporters.

• The LDAP database is used by the administration interface to authenticate users.

• The RSS reader is an independent desktop application that is used to browse the

data in the database. The required data is generated by the administration interface.

17

4.2.3. Server platform

The choice for the server platform was the so-called LAMP platform. It is one of the

most common platforms for web applications on the Internet. The LAMP platform

consists of the following four components:

• Linux (operating system)

• Apache (web server)

• MySQL (database)

• PHP (scripting language)

The choice to use the LAMP platform was made for the following reasons:

• The company already had a suitable server

• Proven technology

• A good environment for creating database driven web applications

Since Apache, MySQL and PHP are available for many platforms, it is possible to

transfer the application to a platform running another operating system such as another

UNIX like system or Microsoft Windows. The development of the Marmalade 1.0

system was made on a laptop computer running Mac OS X, Apache, MySQL and PHP.

4.2.4. Database

MySQL is an open source database system originally developed by Michael Widenius

in 1995. It is licensed under the GNU public license, but commercial license options

also exist. The system is available for a wide array of platforms and uses the common

Structured Query Language (SQL) for executing the database functions.

Today MySQL is the most popular open source database in the world. The current

version is 4.0.18. The next major version, 5.0, has already reached alpha status. PHP

has had native MySQL support since version 3.0. The available functions make

development of database driven web applications effortless.

18

The table structure of the Marmalade 1.0 database is shown in Figure 3.

Figure 3 - The database structure

4.2.5. LDAP authentication

Lightweight Directory Access Protocol (LDAP) is a protocol used to locate the

following resources on a computer network:

• Organizations

• Individuals

• Files

• Devices

19

Authentication to these resources can also be set. LDAP can be used over a private

network or a public one such as the Internet. It could be considered as a version of DAP

(Directory Access Protocol) with a reduced feature set. There are currently multiple

commercial and open source products utilizing LDAP.

The current implementation (LDAPv3) has been developed by The Internet Engineering

Task Force. The IETF web site describes the organization as follows: “The Internet

Engineering Task Force (IETF) is a large open international community of network

designers, operators, vendors, and researchers concerned with the evolution of the

Internet architecture and the smooth operation of the Internet.” [10]. LDAPv3 was

released in 1997. Efforts to improve and develop the protocol remain strong.

On the Morning LAN (Local Area Network), user information is stored on a Microsoft

Windows Active Directory server. The stored data is used to give users access to the

network domain, fileserver directories and Microsoft Outlook e-mail accounts. The

Active Directory server is not accessible from the Internet (shown in Figure 4).

Figure 4 – Basic network structure

PHP has had native support for LDAP databases since version 3.0. There are functions

for connecting, performing queries and processing result sets. These ready-made

functions enable simple development of LDAP-aware web applications using PHP.

20

LDAP authentication in PHP applications had already been used at Morning. This

meant the existing authentication module could be used to add LDAP authentication to

Marmalade. At first, the authentication will only authenticate users, but not allow any

personalization. With LDAP the authentication module in place, it will be convenient to

add such features in the future.

4.2.6. RSS feed

RSS is a technology originally created by Netscape for distributing and syndicating

content for their web portal service in 1999. The company has since lost interest in

developing the technology, but the refinement process was picked up by Userland

Software.

RSS was originally targeted for news distribution, but xml.com [11] states: “Pretty

much anything that can be broken down into discrete items can be syndicated via RSS:

the "recent changes" page of a wiki, a changelog of CVS checkins, even the revision

history of a book.”

Mark Nottingham describes RSS as follows: “RSS is an XML-based format that allows

the syndication of lists of hyperlinks, along with other information, or metadata, that

helps viewers decide whether they want to follow the link.” [12]

RSS is a mass of XML data. This data is read and interpreted by an application. The

application can be a desktop application displaying the data to the user or it can be, for

example, a web application that extracts parts of the feed and displays them on a web

site. RSS feeds can be accessed through standard HTTP connections.

There are multiple versions of the RSS standard in use. The most popular versions

today are 0.9.x and 1.0. Both versions are still actively developed by a number of

organizations. The 2.0 specification has also been released. All versions are based on

the original Netscape specifications.

21

Due to their simplicity, 0.9.x versions remain as the best option for simple content

distribution and syndication needs. The Marmalade system will use RSS version 0.91.

The basic structure of an RSS 0.91 feed is shown in Example 1.

<?xml version="1.0"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS

0.91//EN" "http://my.netscape.com/publish/formats/rss-0.91.dtd">

 <rss version="0.91">

 <channel>

 <title></title>

 <link></link>

 <description> </description>

 <language></language>

 <item>

 <title></title>

 <description></description>

 </item>

 </channel>

</rss>

Example 1 - The XML structure of RSS version 0.91

The Marmalade 1.0 system will give users access to bug reports using RSS feeds. These

feeds can be read using an RSS reader application. The timed refresh feature of the

applications offers an automatic solution to the bug tracking requirement stated by

Thomas J. Shelford: “Everyone on the team should have access to the bug database and

should be checking it frequently.” [13, p. 192]

22

4.3. Interfaces

The Marmalade 1.0 system has two separate user interfaces:

• Administration interface

• Reporting floater interface

The planning phase contains the functional and visual design of the interfaces. The

initial planning was done using mockups, which demonstrate the location and functions

of the elements: “Mockups are primarily single-page static representations of the design

space” [2, p. 216]. The finalizing of the layouts was done during the implementation

phase.

4.3.1. Administration interface

The navigational structure of the administration interface was set at the beginning of the

planning phase. The interface has seven basic locations. They are shown in Figure 5.

Figure 5 - Navigational structure of the administration interface

23

For consistency, each location uses the same basic layout template: “The use of a page

template allows you to establish a consistent and simple page structure throughout the

web site.” [2, p. 184]

The template has seven distinct layout elements. The elements are shown in Table 2.

Table 2 - Administration interface elements

ID Element Description

1 Logo Holds the logo for quick visual identification.

2 Location header Displays the function of the page.

3 Date and time Acts as a time stamp.

4 Primary navigation Holds the links for the major functions in the

system. It is always visible and has two modes.

The modes and links are shown in Figure 7.

The selected item is indicated by changing the

background color of the link.

5 Secondary navigation Provides access to additional functions. It has

two modes, which are shown in Figure 8.

6 Content area Displays the content.

7 Footer area Contains links to additional functions and

contact information.

The placement of the seven elements in the design space is shown in Figure 6.

24

Figure 6 - Administration interface elements

The layouts of the navigation elements 4 and 5 are shown in Figures 7 and 8.

Figure 7 - Primary navigation elements

25

Figure 8 - Secondary navigation elements

The navigational items use distinctive color combinations of black, white and yellow:

“Highly contrasted elements grab the users’ attention, whereas more subdued contrasts

require conscious effort to be noticed” [2, p. 188]. Red, yellow and green colors were

used to indicate the status and priority of a specific bug.

In general, the visual design of the interface was kept simple: “A truly elegant design

reduces the page to its required elements. This allows each element to be intimately tied

to its message and increases the page structure perceived by the user.” [2, p. 180]

Screen captures of the final interface are shown in APPENDIX A.

26

4.3.2. Floater interface

The goal was to create an interface that would be easy for the developers to deploy and

the users to use: “The bug reporting tool should be easy to use and understand. The goal

of any communication tool is to keep everyone on the same page and in tune with each

other and the effort at hand.” [13, p. 192]

The floater interface is built using a combination of PHP and JavaScript. The server-

side scripting language (PHP) creates a suitable client-side script (JavaScript) that is

executed by the browser. This combination of server-side and client-side scripting

makes it possible to receive information from an external database without adding

server-side scripting to the tracked system.

The floater is displayed to the user as a layer floating in the browser window. The

default view (shown in Figure 9) holds the following items:

• Project name

• Report a bug (link)

• View bugs (link)

If the user wishes to report a bug, the first step is to click the view bugs link. This opens

a browser window with a listing of bugs logged for the specific page. The bug listing

window is shown in Figure 10.

27

Figure 9 - Floater interface mockup (floater closed)

Figure 10 - Floater interface mockup (view bugs)

28

If the bug has not yet been reported, the user clicks the report a bug link. It opens a

reporting form (shown in Figure 11). If the user decides not to report the bug, the close

link is used to return the floater to the default state.

If the user tries to submit the form without the required fields, an alert box is shown

(shown in Figure 12).

Figure 11 - Floater interface mockup (floater opened)

29

Figure 12 - Floater interface mockup (missing fields)

If a user successfully submits a report, a confirmation is opened (shown in Figure 13).

Figure 13 - Floater interface mockup (successful submit)

30

The basic flow of the floater application is shown in Figure 14.

Figure 14 – Simplified floater process flow

The visual design closely resembles the administration interface. The aim was to keep

the footprint of the floater element as small as possible.

Screen captures of the final interface are shown in APPENDIX B.

31

5. Implementation

The construction process was done using a development platform. Features were tested

as they were built. The final step was to transfer the system to the production platform.

5.1. Development platform and tools

The development platform was an Apple iBook with Mac OS X version 10.3.x. The

web server was the default Apache (version 1.3.29) installation. PHP (version 4.3.4)

and MySQL (version 4.0.16) were installed using Marc Liyanage’s packages (from

http://www.entropy.ch). In addition to standard UNIX command line tools, some

graphical applications were used. The development work was done using the

SubEthaEdit (version 1.1.5) text editor, which is integrated with the XHTML-rendering

engine for convenient rendering experimenting. A screen capture is shown in Image 3.

Image 3 - A typical view to the SubEthaEdit editor

32

The database queries were built (and tested) using CocoaMySQL (version 0.5), a

graphical interface for the MySQL database. A screen capture is shown in Image 4.

Image 4 - The interface of the CocoaMySQL application

In addition to the development platform, different setups were used to test the interfaces

and functionality of the product. A PC-compatible desktop computer (700 MHz) with

Microsoft Windows XP and Gentoo LiveCD (version 1.4) Linux distribution was the

common testing setup. Both operating systems had multiple browsers from different

vendors installed. The range of different combinations is shown in Table 3.

33

Table 3 - Operating system and browser configurations used in floater testing

Operating system Browser

Internet Explorer

(Version 6.x.x)

Mozilla Firebird

(Version 0.7.x)

Opera

(Version 7.x.x)

Safari

(Version 1.1.x)

Mac OS X X X

Linux X X

Windows X X X

5.2. Back-end and administration interface

The administration interface was built according to the common three-tier model. The

model is comprised of three basic components:

• Presentation tier (web browser)

• Business logic tier (web server + server-side processing)

• Services tier (database or other back-end services)

The tiers are independent and only communicate to the adjacent tier. Physically the

business logic and services tier can run on the same server, but as independent

application processes. The browser communicates to the web server through a network,

such as the Internet or a local area network. The flow of a typical web application:

• The browser sends a request

• The web server receives the request and starts processing

• The server-side process requests data from the database

• The database returns the requested data

• The web server returns the processed data to the browser

34

The presentation tier

In the case of web applications, browsers send a HTTP request to the web server, which

returns a XHTML file. The file contains the data as well as additional layout

information. The browser renders the received file and outputs the data. This is usually

done by displaying it on a computer screen, but browsers for the hearing impaired, for

example, output it as speech.

The presentation layer of the Marmalade 1.0 system was built using standard XHTML

and an external CSS file. The CSS file is used to set the appearance of XHTML

documents. Since the interface has a default layout, the business logic tier was built to

use a template file for producing the XHTML output. The template file contains calls

for content output functions. An example is shown in Example 2.

<!-- primary navigation -->

<div id="primarynavi">

 <?php write_primarynavi(); ?>

</div>

<!-- // primary navigation -->

Example 2 – Writing the primary navigation to the template by calling the function

By utilizing a template-based business logic tier and external style sheets the layout of

the application can be changed conveniently. By modifying the template and the CSS

file, each page in the system is affected.

Modern browsers allow applying a different style sheet for a page when the page is

printed. An example of a printed bug report page is shown in APPENDIX A.

35

The business logic tier

The business logic tier comprises the Apache web server and PHP scripting language.

Once the server has received a request, it is directed to the PHP engine. The engine

processes the application and connects to the service tier as needed. Once the processing

is completed, the data is sent to the requester.

The system is built using a number of files that have a specific function. The structure

of each file (structure shown in APPENDIX F) in the system is identical. The first step

in the application is to make sure the user has the right to access the content. This is

done by including the ldap.php file. If the user is not valid or has not yet logged onto the

system writes a login form and stops the execution.

If the user is valid and execution is not aborted, the system fetches the config.php file

that holds basic system parameters such as the database access details and the base URL

of the system. The next step is to include the functions.php file. This file holds the

functions for writing the navigation and other standard elements that are processed

similarly from page to page.

The write_content function is unique to each page and is used to generate the data to be

displayed on the content area. This function typically contains calls to the database

according to the parameters given in the URL. The write_content function is called in

the template file. The final step is including the template file. The functions called in the

template file are executed and appropriate output is generated.

The typical function for a page is to view data. The todo.php, for example, has more

functions as users can add and delete items. The identifying of different functions is

done by using switch cases. Switch cases allow the program to leap to a certain location

in the program code according to a parameter. In the Marmalade system the parameter

used for switching is given by the value of the XHTML submit element.

An example of the basic structure of a page in the application is shown in Example 3.

36

<?php
require_once("./ldap.php");
require_once("./config.php");
require_once("./functions.php");

switch ($GLOBALS[submit]){

default:

 // write_content function (called in template)
 function write_content(){

 ###
 # #
 # GENERATE AND OUTPUT APPROPRIATE CONTENT #
 # #
 ###

 }
 include("./templates/default.php");

break;

case delete:

 ###
 # #
 # ERASE SELECTED CONTENT AND REDIRECT #
 # #
 ###

break;
}
?>

Example 3 – The basic program structure

The services tier

The Marmalade 1.0 system connects two separate services:

• The MySQL database server

• The LDAP server

37

The business logic tier communicates with the MySQL database Structured Query

Language (SQL). SQL is a standard syntax for adding, removing and displaying the

data in a database. PHP has built in functions for connecting to MySQL databases. An

extract of a business logic tier content write function is shown in Example 4.

$select = "

 SELECT id, title, description

 FROM projects

 ORDER BY id DESC

";

$result = mysql_query($select);

while ($dataColumn = mysql_fetch_array($result)) {

 extract ($dataColumn);

 ###
 # #
 # WRITE A ROW OF DATA (ID, TITLE AND DESCRIPTION) #
 # #
 ###

}

Example 4 - Getting data from MySQL using a while loop

The LDAP authentication used by the system was provided through an existing

authentication module. This module handles the configuration and connection to the

LDAP service. The authentication is implemented by integrating the ready-made

module to the flow of the server-application (shown in Example 3). A basic example for

testing the LDAP authentication is shown in Example 5.

38

<?php

require_once("auth_ldap_config.php");

require_once("auth_ldap_functions.php");

$user = "user";

$pass = "password";

if(pwpadm_auth_from_ldap($user,$pass)) {

 echo "Authentication ok";

} else {

 echo "Authentication failed";

}

?>

Example 5 – Basic LDAP authentication

5.3. Floater interface

The floater component was built using a combination of JavaScript and PHP. It is

deployed by including a certain tag in the XHTML of the tracked system. A detailed

description of the deployment can be read in chapter 6. Screen captures of the final

interface are shown in APPENDIX B.

PHP is used to create a JavaScript file according to the referrer URL (RURL) given by

the browser. The exchange of data is shown in Figure 15.

39

Figure 15 - The basic flow of data between the floater client and the server

The referrer URL is the URL of the page containing the reference (the script tag) to the

PHP file. The database has a base URL (BURL) field for each project. The BURL is a

unique identifier and is used by PHP to identify the project. The RURL is compared to

the BURLs in the database. If a match is found the appropriate floater code is returned,

otherwise floater code with an error report is returned. The process is illustrated in

Figure 16.

40

Figure 16 – Floater process flow

Once the floater code is returned to the browser, it combines it with the content of the

page. JavaScript is able to dynamically write to the XHTML source of the document.

This written data acts as if it was written normally (the result of Examples 6 and 7 are

identical to the user). The combination of PHP processing with JavaScript allows the

floater to retrieve and display data from the database regardless of the platform of the

tracked system.

<script language=”JavaScript”>

document.write(‘<p>Hello world!</p>’);

</script>

Example 6 – JavaScript document writing

<p>Hello world!</p>

Example 7 – Basic HTML tagging

41

The floater JavaScript creates a floating layer on the document. This is achieved by

placing the floater content inside a div-element. This element is assigned with a position

property with the value absolute. Absolute positioning allows the placing of the div-

element anywhere in the browser view port. The positioning is set by defining how

many pixels from the top left corner of the view port the element should be located.

The files used by the floater are placed in a directory (public/) under the Marmalade

root directory. This directory should be publicly accessible. The file structure is shown

in APPENDIX F.

Setting the visual properties of the floater

The formatting of the floater is done using Cascading Style Sheets, a technology for

specifying the visual properties of elements in XHTML. Today it is the standard way to

set properties such as font size, font face and color in XHTML documents. A document

can have references to multiple CSS files. An example of the importing tag is shown in

Example 8.

<style type="text/css" media="screen">

@import "styles/screen.css";

</style>

Example 8 – XHTML tag to import an external CSS-file

In its simplest form CSS styles are set by tag, for example the td tag (table data).

Example 9 demonstrates the syntax for setting a property to an element.

42

td {

background-color:green;

}

Example 9 – Basic CSS definition for setting table data background color

This definition sets all table data elements to have a green background, unless otherwise

specified. The layout of the floater should not be affected by the CSS file of the tracked

system so the visual properties should be explicitly described. This is done by using

CSS class selectors and naming them correctly (as something that would unlikely be

used).

td.marCell {

color:#212121;

background-color:white;

text-decoration:none;

font-size:11px;

font-family:arial, sans-serif;

}

Example 10 – Table data element class in CSS

Example 10 shows the CSS definition for the floater table data element. This definition

specifies the background color of the tag explicitly. If the class selector is used (shown

in Example 11) the td definition shown in Example 9 would have no effect on the cell

even if both styles were imported to the document.

<td class=”marCell”>Table data here!</td>

Example 11 – Assigning a class to a table data element

43

Storing the user path

The floater maintains a history of the path the user has taken. This is done by storing a

cookie on the user’s computer. Searchsecurity.com defines cookies as follows: “A

cookie is information that a Web site puts on your hard disk so that it can remember

something about you at a later time. (More technically, it is information for future use

that is stored by the server on the client side of a client/server communication.)” [14].

The process of using cookies is handled by the browser and is transparent to the user.

Arrays in programming languages could be considered as an advanced form of variable.

They are used to store a group of related data that can be accessed using different

methods (ID numbers, for example). The floater keeps track of the five latest URLs the

user has visited in the tracked system. These URLs are stored into an array with a

dimension of 1 by 5 (an example shown in Table 4). This array is then stored and

updated to the cookie as needed. It would also be possible to use five different cookies,

one for each history data. The management of five different cookies would be more

complex than managing one cookie with an array.

Table 4 - Example contents of userPath array

UserPath[0] UserPath[1] UserPath[2] UserPath[3] UserPath[4]

Index.html Articles/

index.html

Articles/technology/

index. html

Articles/technology/

biotech. html

Undefined

Cookies are, by nature, simple and hold the following data encoded in a single string:

• Cookie data

• Expiry date

• Allowed domain

• Allowed path

Storing an array into a cookie is not a standard function provided by JavaScript.

Stephen Chapman’s Cookie Toolbox is a JavaScript library that has functions for

44

storing arrays into cookies. This is achieved by parsing the array into a single string

when it is saved to a cookie and parsing it back to an array when one is read. The library

also has other functions that allow effortless cookie management.

Example 12 shows the JavaScript function used to update the user path cookie. PHP is

used to assign each cookie a unique name so the user can work on multiple floater-

enabled projects without the history cookies intervening with one another. The Cookie

Toolbox does not have advanced array-handling functions, so some additional

functionality had to be added. In addition, the function prevents the history being filled

with a single URL when the page is refreshed by comparing the latest history URL to

the current one.

function userPathUpdate(){

 var cookieName = 'userPathCookie<?php echo $projectId ?>';

 var userPath = init_array();

 get_array(cookieName, userPath);

 var userPath5 = userPath[5];

 if(userPath5 == window.location){

 // do nothing

 } else {

 var pos = 1;

 del_entry(cookieName, userPath, pos, expires)

 get_array(cookieName, userPath);

 var num = next_entry(userPath);

 userPath[num] = window.location;

 set_array(cookieName, userPath, expires);

 }

}

Example 12 – The JavaScript function used to update the user path cookie

45

Bug submission

Once the user has filled in the reporting form and clicked the submit button the system

checks that the required fields are filled. The form has three mandatory fields:

• Description

• Name

• E-mail

If one or more of these fields are missing, the operation is aborted and the user is

prompted with a JavaScript alert box. If all fields are valid, the process is taken forward.

The data is sent to a PHP script as HTTP post data. A complete list of the fields sent is

shown in Table 5. The script handling the submitted data simply saves it to the

appropriate fields in the database and prints a confirmation report to the user.

Table 5 - HTTP post data sent by the floater

Variable Type Description Example

Description User input Detailed description of

problem

The third level

navigation is not shown

if user does not have

the Macromedia Flash

plug-in installed.

Category User input Category of the problem

(content, technical, visual,

other)

Technical

Priority User input Priority of the problem

(high, medium, low)

Medium

Sender User input Name of the person who

reported the problem

James Maximi

E-mail User input E-mail of the person who

reported the problem

James@example.com

46

Variable Type Description Example

Report User input Is an e-mail report sent to

the reporter once the

problem has been fixed?

True

Client ID Automatic Which client was used to

report the problem

Floater

Window

size

Automatic The size of the browser

view port in pixels

860 x 895

Color depth Automatic The color depth of the

users operating system

32 bits

Page title Automatic Title of the document

(fetched from the title tag)

News service >

Articles > Technology

> Bio technologies

Project ID Automatic The project ID number in

the Marmalade system

147

User Path 1 Automatic User path data Index.html

User Path 2 Automatic User path data Articles/index.html

User Path 3 Automatic User path data Articles/technology/

index.html

User Path 4 Automatic User path data Articles/technology/

biotech.html

User Path 5 Automatic User path data Undefined

Name Attachment data Name of the attached file Screen_capture.gif

Type Attachment data The file type the attached

file

Image/gif

Temporary

Name

Attachment data The path to the temporary

file the attachment data is

saved (on the server)

/var/tmp/phpIaFLNU

Size Attachment data Size of the attached file 23942

47

Browser compatibility

The floater was tested to work on the latest versions of the four popular browsers:

Microsoft Internet Explorer, Mozilla Firebird, Opera and Safari. In addition, many

browsers today use a common rendering engine and thus the number of compatible

browsers is higher. The latest generation Netscape browsers and Mozilla, for example,

both utilize the Gecko rendering engine.

In their default configurations all of the browsers mentioned above have both JavaScript

and Cookies enabled. If the user disables either one of these the floater will cease to

function. Support for old browser versions such as Netscape 4.x.x was not required

because development teams tend to use up-to-date browser versions.

Setup of floater using the administration interface

The administration interface can be used to set some properties of the floater. Each

project has its distinctive set of values. The available properties are listed in Table 6.

Table 6 - Administration interface options for the floater

Property Explanation

Visibility Sets the visibility of the floater. Possible values are enabled and

disabled.

Limit by IP Sets whether the visibility of the floater is validated against the IP-

addresses in the database. The floater does not print the reporting

layer for invalid IPs. Possible values are enabled and disabled.

Valid IPs Allows the user to add and remove valid IP-addresses. They are

overlooked unless the Limit by IP option is enabled.

Align Sets the horizontal alignment of the floater element. Possible values

are left and right.

Margin Sets the distance of the floater element from the top of the browser

view port. Any reasonable numerical values are accepted.

48

Encountered problems

The most serious difficulty was the unreliability of receiving the referrer data from the

visiting browsers. The problem arises if the user installs firewall software that alters the

browsers functionality so that it no longer sends the data. Some versions of Norton

Firewall enable this type of behavior. Secure Hyper Text Transfer Protocol (SHTTP)

connections also prevent the sending of referrer data to insecure sites (in this case the

server running the Marmalade system).

The solution for this problem is to create custom floater units with hard coded project

ID numbers. This removes the dependency for the referrer data. It adds complexity to

updating the floater, since altering a single file no longer affects all projects.

Getting the floater to work flawlessly on several projects at the same time was also

somewhat of a challenge. Due to the browsers’ caching feature the JavaScript file used

to display the floater was not refreshed if the user switched from one project to another.

This resulted in corrupted data as project IDs and URLs were incorrect.

The solution for the browser-caching problem was to add random parameters to the

URL of the floater. The URLs “http://silvia.local/marmalade/public/index.php?cat” and

“http://silvia.local/marmalade/public/index.php?dog” both point to the same file. The

cat and dog parameters are not used by the script, but the browser now considers them

unique.

5.4. RSS feed

The RSS implementation was done after the administration interface was completed,

because the RSS system relies on it to create the right queries to the database. RSS feed

URLs are identical to the administration interface URLs, except for the RSS parameter.

An example URL is shown in Example 13.

49

http://silvia.local/marmalade/report.php?category=%25&status=%25

&priority=%25&keyword=james&projectId=109&rss=true

Example 13 - An URL pointing to an RSS feed

If the RSS parameter is set to be true, the administration interface will output an RSS

feed instead of the XHTML interface. Example 14 demonstrates how the system

includes the rss.php file and stops executing if the parameter is set to be true.

// if RSS then include rss.php and exit

if ($_GET[rss] == "true"){

 $rssLink = explode("/", "$_SERVER[REQUEST_URI]");

 $rssLink = $systemUrl.end($rssLink);

 $rssLink = htmlspecialchars($rssLink);

 include("./rss.php");

 exit;

}

Example 14 - RSS switch code

The RSS implementation creates an RSS feed containing multiple items, one for each

matching bug. Since XHTML formatting is considered valid, it is used to layout the

data in tables similar to the administration interface. The basic bug item structure in an

RSS feed is shown in Example 15.

50

<item>

<title><![CDATA[Bug Entry (1208) from Jimi Minimi]]></title>

<description><![CDATA[

##
#
BUG DETAILS FORMATTED WITH HTML ELEMENTS
#
##

]]></description>

</item>

Example 15 - Marmalade 1.0 RSS item

The RSS feed can be read by browsers, but may seem corrupted to the user. An example

is shown in Image 5. The real strength of RSS feeds lie in the reader applications. These

applications can interpret the feed into an organized listing of items. Screen captures of

suggested RSS reader applications are shown in APPENDIX C.

Image 5 - RSS feed shown in the Safari browser

51

Problems encountered

Due to its simplicity, the RSS feed was graceful to implement. However, problems did

arise with the suitability of reader applications. Most reader applications use a caching

method to store feed items. For the Marmalade system, this was a problem since the aim

was to provide the users with a live view to the database.

For example, a user wishes to receive a feed with bugs marked as open and categorized

as content. Caching readers function correctly as long as no items are removed from the

feed. In this case removing an item would constitute setting a bug’s status as closed.

Caching readers will not recognize the removal of this item and continue to store it in

the cache. To the user of the system it appears as if no bugs are being corrected.

The solution for this problem was to find reader applications that are able to function

without caching the headlines. The recommended RSS reader applications for the

Marmalade 1.0 system are Wildgrape NewsDesk for Microsoft Windows and Ranchero

Software NetNewsWire Lite for Macintosh environments. Screen captures of the

applications are shown in APPENDIX C.

5.5. Platform transition

The target platform must meet the following requirements:

• Apache 1.3.x installed

• MySQL 4.x.x installed

• PHP 4.x.x (with MySQL & LDAP support compiled) installed

• Sendmail installed

The platform transition process has three steps:

• Move files

• Import database structure

• Modify configuration file

52

The first step is to move the files to the remote host. The command is shown in

Example 16.

scp -r marmalade janit@madeleine.local:~/public_html/

Example 16 – Secure copy command

Once the files are moved, the database is created and the schema is loaded. The schema

is included in the basic file structure (marmalade.sql). The commands shown in

Example 17 are executed on the production server.

mysql> create database marmalade;

Query OK, 1 row affected (0.00 sec)

mysql> exit;

Bye

madeleine:~ janit$ mysql -u root -p marmalade <

marmalade/marmalade.sql

Enter password:

madeleine:~ janit$

Example 17 – Database create and schema load commands

Once the database is working (set user permissions if needed), the configuration file

(shown in Example 18) is opened with a text editor such as EMACS or Pico.

53

$today = date("d.m.Y, G.i");

$systemUrl = "http://madeleine.local/marmalade/";

$dbHost = 'localhost';

$dbUser = 'root';

$dbPass = 'password';

$dbName = 'marmalade';

Example 18 – main configuration file (config.php)

Once these steps are completed, the system is ready. Test by opening the system URL.

Encountered problems

Some minor problems due to differences in environment settings were encountered:

• The PHP configuration required that all files be addressed with “./”

• Missing LDAP functions (not compiled to PHP)

• MySQL password format difference (screen capture shown in Image 6)

Image 6 – MySQL password format incompatibility error shown by the application

54

6. Floater deployment

The deployment of the floater client involves adding a tag to the XHTML of the tracked

system. The required tag is a script tag, which refers to an external source. The system

relies on the referrer data given by the browser, so the JavaScript code cannot be placed

inside the script tags. The placement of the tag is not crucial, but it would be good

practice to always place it to the same place, for example before the closing body tag.

To avoid browser caching problems with multiple projects a random parameter should

be added by appending the following characters to the source parameter:

“?rand=XXXXXX” (the Xs represent random characters). The random parameter

should be same for each page of the project. If a random number is generated, the

floater code is loaded each time. This results in increased server load.

An example of the required script tag and its placement in the XHTML file is shown in

Example 19.

<script language="JavaScript"

src="http://silvia.local/marmalade/public/index.php?rand=880734116">

</script>

</body>

Example 19 – Script tag for loading the floater

The code should be on each individual XHTML-page the browser receives. For

template-based systems, it should be added to each template or possibly to the

commonly included footer file.

For tracking static XHTML-files, the process requires additional tools or tedious

handwork. It is possible to make the changes by hand to each file, but it is ideal to use a

search and replace function of a text editor. This function searches a mass of files for a

55

certain pattern and replaces it with another. This feature is common in popular editor

tools (such as Macromedia Homesite and Dreamweaver) and makes it effortless to

make the required changes. The search and replace interface of Macromedia

Dreamweaver is shown in Image 7.

Image 7 - Macromedia Dreamweaver search and replace interface

It is recommended that the script tags be removed from the system when it enters the

production stage. In theory with the floater visibility property set to hidden the floater

should not be displayed to the users. In practice, the XHTML can be examined by the

users of a web site (or a web application) and this could present a security risk. In

addition not removing the tag would create unnecessary load for the server running the

Marmalade 1.0 system.

56

7. Conclusions

The purpose of the project was to create a tool for reporting and keeping track of bugs.

In technical terms, the project was successful as the final product fulfills the goals set

during the requirements phase. The development process followed the original plan and

was in all quite fluent. The reason for this could be the fact that the implementation was

done independently, unaffected by other people’s lack of time, interest or motivation.

Knowledge of the theory of common bug tracking practices and methods were gained

during the requirements and planning stages. The implementation phase was technically

challenging and further experience of web application development was acquired.

Especially the implementation of the floater by combining server-side and client-side

scripting proved to be challenging. It also gave new insight into browser behavior, as

well as their possibilities and potential problems.

In its current version, the system is limited to tracking pages within XHTML based

applications. With the rising number of Macromedia Flash content created at Morning,

a floater unit similar to the JavaScript version could be built using Flash’s ActionScript.

In April 2004 the Marmalade 1.0 system has been used on two projects within the

company. One of them is an ongoing internal development project. The other was a

client project, which was completed during an intensive two-week period. In both cases,

the system has worked well in technical terms; there were few problems in reporting

bugs or administering them.

The real issues lay in the fact that the tool has not yet been adopted as a part of the

development process. Before the system can be successful, it needs to be a standard

practice in projects. In addition, it is important to train the reporters how to clarify the

problem at hand: “A report that vaguely states that the navigation is confusing will be

worthless. Instead, it needs to state specifically how the navigation might be improved.

Then the developers need to return to the code and fix the problem.“ [2, p. 407]

57

References

[1] Matthew A. Telles, Yuan Hsieh. The Science of Debugging. 2001, The Coriolis

Group.

[2] Darren Gergle, Tom Brinck, Scott D. Wood. Usability for the Web: Designing

web sites that work. 2002, Academic Press.

[3] Morning Digital Design Oy. 2004, WWW-document.

http://www.morning.fi/en/

[4] Steve Maguire. Writing Solid Code. 1993, Microsoft Press.

[5] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. 2000, New

Riders Publishing.

[6] Joel Spolsky. Painless Bug Tracking. 2000, WWW-document.

http://www.joelonsoftware.com/articles/fog0000000029.html

[7] Free Software Foundation. Free Software Directory. WWW-document.

http://www.gnu.org/directory/devel/debug/Bug_tracking_systems/

[8] Free Software Foundation. General Public License. 1991, WWW-document.

http://www.gnu.org/licenses/gpl.html

[9] The Mozilla Organization. WWW-document.

http://www.mozilla.org/download.html

[10] The Internet Engineering Task Force. Overview of the IETF, WWW-document.

http://www.ietf.org/overview.html

58

[11] Mark Pilgrim. What is RSS. 2002, WWW-document.

http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

[12] Mark Nottingham. RSS tutorial for Content Publishers and Webmasters. 2002,

WWW-document.

http://www.mnot.net/rss/tutorial/

[13] Thomas J. Shelford, Gregory A. Remillard, Michael Smith. Real Web Project

management. 2003, Addison-Wesley.

[14] TechTarget. Cookie definition. WWW-document.

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211838,00.html

59

APPENDIX A: Administration interface screen captures

Image 8 - Administration interface (login screen)

Image 9 - Administration interface (project listing)

60

Image 10 - Administration interface (create project)

Image 11 - Administration interface (bug listing)

61

Image 12 - Administration interface (RSS help pop-up)

Image 13 - Administration interface (bug details)

62

Image 14 - Administration interface (bug closing form)

Image 15 - Administration interface (bug reporting form)

63

Image 16 - Administration interface (todo listing)

Image 17 - Administration interface (project settings)

64

Image 18 - Administration interface (printed report)

65

APPENDIX B: Floater interface screen captures

Image 19 - Floater interface (report form closed)

Image 20 – Floater interface (report form open)

66

Image 21 - Floater interface (successful report)

67

APPENDIX C: RSS reader screen captures

Image 22 – Recommended Windows RSS reader (Wildgrape NewsDesk)

Image 23 – Recommended Macintosh RSS reader (Ranchero Software NetNewsWire

Lite)

68

APPENDIX D: Commercial bug tracking tool license fees

Table 7 - Comparison of commercial bug tracking tool license fees (source:

http://www.websina.com/bugzero/bug tracking-pricing.html)

Product Company Starting Price Expansion Price

TeamTrack 5.6 TeamShare $4995 (5-user) unknown

TrackGear 3.0 LogiGear $1755 (5-user) $1609 per 5-user

TestTrack Pro 4.7 Seapine $299 (1-user) $299 per user

DevTrack 5.0

(Standard)
TecExel $495 (1-user) $445 per user

PR-Tracker 5.10 Softwise Company $199 (1-user) $199 per user

Problem Tracker

4.1
NetResults $950 (5-user) $190 per user

Aardvark 1.15 Red Gate $1950 (25-user) $9950 (unlimited)

PVCS Tracker 7.1.1 Merant $749 (1-user) $749 per user

TrackRecord _ Compuware $1495 (1-user) $1495 per user

Clear Quest Rational Software Expensive Expensive

Bugzero 3.x WEBsina $399 (5-user) $1299 (unlimited)

69

APPENDIX E: Typical bug reporting forms

Image 24 – Problem Summary Report

70

Image 25 – Problem report and Resolution Form

From Usability for the Web by Tom Brinck, Darren Gergle, and Scott Wood. Morgan

Kaufmann Publishers, San Francisco.

71

APPENDIX F: System file structure

